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We find three distinct phases; a tubular phase, a planar phase, and the spherical phase, in a triangulated fluid
surface model. It is also found that these phases are separated by discontinuous transitions. The fluid surface
model is investigated within the framework of the conventional curvature model by using the canonical Monte
Carlo simulations with dynamical triangulations. The mechanical strength of the surface is given only by
skeletons, and no two-dimensional bending energy is assumed in the Hamiltonian. The skeletons are composed
of elastic linear chains and rigid junctions and form a compartmentalized structure on the surface, and for this
reason the vertices of triangles can diffuse freely only inside the compartments. As a consequence, an inho-
mogeneous structure is introduced in the model; the surface strength inside the compartments is different from
the surface strength on the compartments. However, the rotational symmetry is not influenced by the elastic
skeletons; there is no specific direction on the surface. In addition to the three phases mentioned above, a
collapsed phase is expected to exist in the low bending rigidity regime that was not studied here. The inho-
mogeneous structure and the fluidity of vertices are considered to be the origin of such a variety of phases.
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I. INTRODUCTION

A crumpling of surfaces has been investigated on the ba-
sis of the singularity analysis, and progress has been recently
made on understanding the crumpling phenomena; the uni-
versal structure on the crumpled thin sheets was found in the
formations of singularity of ridges and cones �1,2�. A similar
transition to this phenomena was also found experimentally
between the smooth state and the crumpled state in an arti-
ficial membrane, which is partly polymerized �3�.

Studies have also been focused on the transition in the
surface model of Helfrich, Polyakov, and Kleinert �HPK�
�4–6� from the viewpoint of statistical mechanics �7–13�.
The bending rigidity is known to be stiffened by the thermal
fluctuation of the surface, and this was confirmed in the sta-
tistical mechanics of membranes �14–18�. Numerical studies
were made to understand the transition in triangulated sur-
face models �19–30�. The transition was reported as first or-
der in recent numerical studies �31,32�.

On the other hand, the concern with inhomogeneous sur-
faces has been growing over the past decade �33,34�. A ho-
mogeneous artificial membrane that is coated by elastic skel-
etons is also considered to be an inhomogeneous membrane.
Some of the mechanical properties of such membranes were
revealed experimentally �35�. The hop diffusion of mem-
brane protein or lipids was observed, and as a consequence
the compartment of cytoskeletons was confirmed to be in
biological membranes �36�. It is also well known that the
microtubule, which is an element of the cytoskeleton, gives a
mechanical strength to the surface of the biological mem-
branes.

However, the surface collapsing phenomena and the sur-
face fluctuation phenomena are almost unknown in such in-
homogeneous models for membranes. Therefore, it is worth-

while to study an inhomogeneous fluid surface model within
the framework of the conventional surface model of HPK.
We note that the inhomogeneity in our model corresponds to
the cytoskeletons in biological membranes as stated above.
The fluidity realized by dynamical triangulations in the inho-
mogeneous model, as well as the fluidity in the homoge-
neous surface models, corresponds to the lateral diffusion of
lipids in membranes.

In this paper we study a compartmentalized surface model
by Monte Carlo �MC� simulations. The Hamiltonian of the
model includes no two-dimensional bending energy but a
one-dimensional bending energy. The model is defined on
dynamically triangulated surfaces, where the free diffusion
of vertices is confined inside the compartments. The me-
chanical strength of the surface is given only by the compart-
ment boundary, which is composed of one-dimensional elas-
tic chains and rigid junctions. Because the collapsed phase is
expected to appear at sufficiently small bending rigidity
b�kT�→0 �b�0�, we concentrate on the phase structure at
relatively large b in this paper. Consequently, information on
the phase boundary at b→0 remains unanswered.

We recently reported numerical results of three types of
surface models �37,38�, which are similar to the model in
this paper. Then, we should comment on the similarity �dif-
ference� between the model in this paper and the models in
�37,38�. Firstly, the lattice structure of the model in this pa-
per is very similar to that of the first model in �37� and that
of the model in �38�, and is identical to that of the second
model in �37�. Secondly, the lattice in this paper and that of
the first model in �37� are the dynamically triangulated one,
while the lattice of the second model in �37� and that in �38�
are the fixed-connectivity one. Thirdly, the Hamiltonian is
different from the one in the first model in �37�. The Hamil-
tonian of the model of this paper includes only one-
dimensional bending energy, which is defined on the com-
partment boundary, while the Hamiltonian of the first in �37�
includes only a two-dimensional bending energy, which is*Electronic address: koibuchi@mech.ibaraki-ct.ac.jp
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defined all over the surface, and no one-dimensional bending
energy is given to the compartment boundary. Therefore, the
model in this paper is different from the three models in
�37,38�.

Our results obtained in this paper show that the model
undergoes a first-order transition between the smooth phase
and the crumpled phase. Moreover, the smooth phase can be
divided into the spherical phase and the planar phase, and the
crumpled phase can also be divided into the tubular phase
and the collapsed phase, which is expected to appear at suf-
ficiently small b because no self-avoiding property �39–41�
is assumed in the model. It must be emphasized that such a
variety of phases can be seen neither in the conventional
surface models nor in the compartmentalized models such as
those in �37,38�.

One remarkable result is the appearance of planar sur-
faces. The echinocytic shapes of erythrocytes were exten-
sively studied, and they are currently known to be described
by many models such as the area difference bilayer model
�34�. The shape of membranes is also sensitive to the flow
fields �42�. Our model in this paper indicates that one pos-
sible origin of such planar shape comes from the inhomoge-
neity due to the cytoskeletal structure and the fluidity of
lateral diffusion of vertices.

II. MODEL

Figure 1�a� shows a triangulated surface of size
�N ,NS ,NJ ,L�= �2322,600,42,6�, where N is the total num-
ber of vertices including the junctions, NS is the total number
of vertices on the chains, NJ is the total number of junctions,
and L is the length of chains between the two nearest-
neighbor junctions. It should be noted again that NJ is in-
cluded in N; junctions are counted in the total number of
vertices. The junctions are assumed as rigid plates; twelve of
them are pentagon and all the others are hexagon. The junc-
tion size in Fig. 1�a� is drawn many times larger than that of
the lattices for the simulations; and it will be discussed in the
last part of this section. Thick lines on the surface in Fig. 1�a�
denote the chains, which are terminated at the junctions.

The construction of the lattices is as follows: Let us start
with the icosahedron. Every edge of the icosahedron is di-
vided into � pieces of uniform length, and then we have a
triangulated surface of size N0=10�2+2 �=the total number
of vertices on the surface�. The compartmentalized structures
are constructed by dividing � further into m pieces �m

=1,2 , . . . �. Thus, we have the chains of uniform length L
= �� /m�−2 when m divides �. The reason for the subtraction
−2 is because of the junctions at the two end points of the
chain. Because the compartmentalized structure is a sublat-
tice, the total number of junctions NJ is given by NJ=10m2

+2. The total number of bonds in the sublattice is 3NJ−6,
and each bond contains L−1 vertices, then NS is given by
NS= �3NJ−6��L−1�, which can be written as NS=30m��
−3m�. The hexagonal �pentagonal� rigid junctions are com-
posed of 7�6� vertices, then NJ−12 hexagonal rigid junctions
and 12 pentagonal rigid junctions reduce the total number of
vertices N0 by �NJ−12��6 and 12�5. Therefore, we have
N=N0−6NJ+12, which can also be written as N=10�2

−60m2+2. The thermodynamic limit of our model is defined
by N→�, NS→�, and NJ→� under the condition that L is
finite. We have the thermodynamic limit at �→� and m
→�. The lattice of size �N ,NS ,NJ ,L�= �2322,600,42,6� in
Fig. 1�a� is given by two independent integers �� ,m�
= �16,2�.

The surfaces can be characterized by the length L. In this
paper, we assume three values for L such that

L = 6, L = 8, L = 11. �1�

The value of L has a one to one correspondence with the
total number of vertices n in a compartment; in fact, the
values of L in Eq. �1� correspond to n=21, n=36, and n
=66, respectively �37�. We note that the effective physical
meaning of increasing �decreasing� L can be considered as
the increasing �decreasing� temperature. In fact, the surface
fluctuation mainly comes from the thermal fluctuation of ver-
tices inside the compartments. Because no bending energy is
assumed inside the compartments, the fluctuation of vertices
becomes large not only in the in-plane directions �free diffu-
sion� but also in the direction perpendicular to the surface.
Thus, we consider that the fluctuations are expected to grow
with increasing n, i.e., increasing L.

We use the surfaces of size �N ,NS ,NJ� listed in Table I.
Three different sizes �N ,NS ,NJ� are assumed for each L. The
corresponding integers �� ,m� are as follows: �16, 2�, �24, 3�,
and �32, 4� for the L=6 surfaces, �10, 1�, �20, 2�, and �30, 3�
for the L=8 surfaces, and �13, 1�, �26, 2�, and �39, 3� for the
L=11 surfaces.

The model is defined by the partition function

θ(ij)θ(ij)

(a) (b)

FIG. 1. �Color online� �a� Starting configura-
tion of surfaces of size �N ,NS ,NJ ,L�
= �2322,600,42,6�, and �b� angles ��ij� in the
bending energy S2 of Eq. �4�. Thick lines in �a�
denote the compartment boundary composed of
the linear chains and the rigid junctions of the
hexagonal and the pentagonal plates, whose size
is drawn many times larger than that of the lat-
tices for the simulations.
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Z = �
T
�� �

i=1

N

dXi exp�− S�X,T �� ,

S�X,T � = S1 + bS2, �2�

where S1 is the Gaussian bond potential, which is defined all
over the surface, and S2 is the one-dimensional bending en-
ergy, which is defined on the compartment boundary and will
be given below. The parameter b is the bending rigidity. The
integration symbol �� in Eq. �2� denotes that the center of
mass of the surface is fixed. �T denotes the sum over all
possible triangulations T, which are performed by the bond
flip technique keeping the compartments unflipped. The bond
flip procedure will be given in the following section.

The integration measure �i=1
N dXi is given by the product

�
i=1

N

dXi = 	�
i=1

N�

dXiqi
�
	�

i=1

NJ

dXi�
j�i�

qj�i�
� 
 �� = 3/2,0� ,

�3�

where N� �=N−NJ� is the total number of vertices excluding

the junctions, �i=1
N� dXiqi

� denotes the integration over the 3D
translational degrees of freedom �DOF� of the vertices i, and
�i=1

NJ dXi� j�i�qj�i�
� denotes those of the 3D translational DOF

and the 3D rotational DOF of the junctions i. The coordina-
tion number qi is the total number of bonds meeting at the
vertex i, and qj�i� is the total number of bonds meeting at the
corner j�i� of the junction i.

The parameter � was chosen to be �=3/2 in �43,44�,
while �=0 in many previous simulations on dynamically
triangulated surfaces in the literatures. It is easy to under-
stand that large positive � suppresses the configurations with
a large coordination number. Therefore, it is interesting to
see the dependence of the phase structure on �.

We chose both �=3/2 and �=0 for the weight qi
� �43,44�,

and see whether the phase structure of the model depends on
� or not. If the parameter is chosen to �=3/2, then the
coordination number qi serves as a weight of the integration

dXi, while �=0 gives the uniform weight. The weight �i=1
N� qi

�

can also be written as �i=1
N� qi

�=exp���i log qi�, and therefore,

�i=1
N� qi

� is considered to be the coordination dependent term
−��i log qi in the Hamiltonian; −��i log qi changes its value
only on dynamically triangulated surfaces.

The Gaussian term S1 and the bending energy term S2 are
defined by

S1 = �
�ij�

�Xi − Xj�2, S2 = �
�ij�

�1 − cos ��ij�� , �4�

where ��ij� in S1 is the sum over bonds �ij� connecting the
vertices i and j, and ��ij� in S2 is also the sum over bonds
�ij�. ��ij� in S2 is the angle between the bonds i and j, which
include virtual bonds. The virtual bonds denote the lines
between the center and the corners of the junction; the hex-
agonal �pentagonal� junction contains six �five� virtual
bonds.

Figure 1�b� is a junction and the chains are linked to the
junction on a fluctuating surface. Triangles are eliminated
from the figure. One ��ij� shown at a corner of the junction is
defined by using a virtual bond and a real bond in a chain,
and the other ��ij� shown at a vertex is defined by real bonds
on the same chain.

The size of the junctions can be characterized by the edge
length R, which is fixed to

R = 0.1 �edge length of the junctions� . �5�

The value R=0.1 is relatively smaller than the mean bond
length 0.707, which corresponds to the relation S1 /N=1.5
satisfied in the equilibrium configuration of surfaces without
the rigid junctions. As we will see later, the relation S1 /N
=1.5 is slightly violated in the model of this paper because of
the rigid junctions.

Here we comment on the unit of physical quantities. Let a
be the length scale of the model, then the unit of physical
quantity that has the length unit can be expressed by a; the
unit of S1 is �a2�. The surface tension coefficient � in �S1

+bS2 has the unit �kT /a2� and is assumed to be �
=1�kT /a2�, and the bending rigidity b has the unit of �kT� as
described above.

Note that the bending rigidity b in the Hamiltonian is a
microscopic quantity from the viewpoint of the statistical
mechanical model, and therefore b is not always identical to
the macroscopic bending rigidity of real physical mem-
branes. However, the microscopic value b of real membranes
can effectively be varied with the temperature, because b has
the unit of kT. Therefore, it is possible to consider that the
phase structure described in terms of b in the surface model
corresponds to the phase structure described in terms of T in
real physical membranes. The length scale a in the model is
also a microscopic quantity and, we consider that a is suffi-
ciently smaller than the membrane size.

III. MONTE CARLO TECHNIQUE

A sequence of random numbers called Mersenne Twister
�45� is used in the canonical MC simulations. The Metropolis
technique is applied to update X and T, where the variable X
denotes the position of the vertices and that of the junctions.
The vertex position X is shifted so that X�=X+�X, where �X
is randomly chosen in a small sphere. The new position X� is
accepted with the probability min�1,exp�−�S��, where �S
=S�new�−S�old�. The position X of a hexagonal �or pentago-
nal� junction, which is not a point but a rigid plate, is also
integrated out by performing 3D random translations and 3D
random rotations.

TABLE I. The surface size assumed in the simulations. Three
sizes �N ,NS ,NJ� are assumed for each L.

L �N ,NS ,NJ� �N ,NS ,NJ� �N ,NS ,NJ�

6 �2322,600,42� �5222,1350,92� �9282,2400,162�
8 �942,210,12� �3762,840,42� �8462,1890,92�
11 �1632,300,12� �6522,1200,42� �14672,2700,92�
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Thus, the variable X is updated by a random N� �=N
−NJ� shifts of vertices, a random NJ translations of junctions,
and a random NJ rotation of junctions. These updates are
denoted by �N� ,NJ ,NJ� updates of X. The N� shifts of X can
be divided into the NS shift of the vertices on the linear
chains and N�−NS shifts of all the other vertices, which are
those inside the compartments.

The radius of the small sphere for �X is fixed at the be-
ginning of the MC simulations in order to maintain about a
50% acceptance rate. The vertices on the linear chains carry
the bending energy S2 in Eq. �4�, while all the other vertices
inside the compartments does not. Therefore, the acceptance
rate is independently controlled in the two groups of vertices.
The radius for the random translation of the junctions and
that for the random rotation are also independently chosen so
that the acceptance rates are both about 50%.

The summation over T in Z of Eq. �2� is performed by
using the standard bond flip technique �22,23�. The flip is
accepted with the probability min�1,exp�−�S��. The accep-
tance rate for the bond flip is not under control and is about
75%, which is almost independent of b.

The bonds are labeled with sequential numbers. The total
number of bonds is denoted by NB� , which excludes the num-
ber of bonds on the linear chains because the bonds on the
linear chains remain unflipped.

The bond flip is performed as follows: Firstly, the odd-
numbered bonds are sequentially chosen to be flipped for the
NB� /2 updates of T, and after that, the �N ,NJ ,NJ� updates of
X are performed. Secondly, the remaining even-numbered
bonds are chosen to be flipped for the NB� /2 updates of T, and
after that, the �N ,NJ ,NJ� updates of X are performed. Thus,
the �N ,NJ ,NJ� updates of X and the NB� /2 updates of T are
consecutively performed, and these make one Monte Carlo
sweep �MCS�. We introduce the lower bound 1�10−8 to the
area of triangles. No lower bound is imposed on the bond
length.

IV. RESULTS OF SIMULATION

A. �=3/2

As mentioned in Sec. II, we assume the value of � in Eq.
�3� as �=3/2 and �=0. In this subsection, we present the
results obtained under �=3/2 by using snapshots and fig-
ures, and in the next subsection we will show some of the
results under �=0.

The thermalization MCS is 1�107 in almost all cases.
However, more than 1�108 thermalization MCS were done

close to the transition point in such cases that the surface is
trapped in one phase at first and then changes its phase to a
more stable one under a given condition. The total number of
MCS for the production of samples is 0.8�108�1.3�108.
At the transition point, about 2�108 MCS was performed
after the thermalization in some cases.

We show snapshots of the �N ,NS ,NJ ,L�
= �8462,1890,92,8� surface in Figs. 2�a�–2�c�. They were
obtained at �a� b=21.2, �b� b=21.8, and �c� b=22, which,
respectively, corresponds to the tubular phase, the planar
phase, and the spherical phase. The snapshot of Fig. 2�b� at
b=21.8 was the final configuration produced after 2�108

MCS including 1�108 thermalization MCS; the planar sur-
face was stable after the thermalization MCS. The surface
sections are shown in Figs. 2�d�–2�f�; the sections in Figs.
2�d� and 2�e� were obtained by slicing the surfaces perpen-
dicular to the vertical axis, and the section in Fig. 2�f� was
obtained by slicing the surface perpendicular to a horizontal
axis. All of the snapshots were drawn in the same scale. The
axis of the tubular surface Fig. 2�a� as well as the axis per-
pendicular to the planar surface Fig. 2�b� is spontaneously
chosen.

20 21 22 23

0.05

0.06

(b)

S2/NS'

b

N=8462
L=8
α=1.5

tubular

planar

spherical

9 9.5 10

0.11

0.12

0.13

b

S2/NS'

N=9282
L=6
α=1.5

(a)

tubular spherical

46 48 50 52
0.02

0.03

(c)

spherical

S2/NS'

b

N=6522
L=11
α=1.5

tubular

FIG. 3. The one-dimensional bending energy
S2 /NS� against b obtained on the surfaces of �a�
L=6, �b� L=8, and �c� L=11. NS��=NS+6NJ

−12� is the total number of vertices where S2 is
defined.

(a) b= 21.2 (b) b= 21.8 (c) b= 22

(d) The section (e) The section (f) The section

FIG. 2. �Color online� The snapshots of surfaces of size
�N ,NS ,NJ ,L�= �8462,1890,92,8� obtained at �a� b=21.2 �tubular
phase�, �b� b=21.8 �planar phase�, and �c� b=22 �spherical phase�,
and �d�, �e�, �f� are the surface sections of �a�, �b�, �c�, respectively.
�=3/2.
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The planar phase is stable only on the L=8 surfaces,
while it seems unstable on the L=6 surfaces and on the L
=11 surfaces. Even if the planar phase once appears on the
surfaces of L=6 and L=11 of size at least N	9282 and N
	14 672, respectively, it eventually collapses into the tubu-
lar phase. Therefore, we find that no planar phase can be
seen on the L=6 and the L=11 surfaces; the tubular phase
and the spherical phase are connected by a discontinuous
transition on those surfaces. Thus, we understand that the
planar phase appears depending on the size of the compart-
ments. We should note that the planar surface may bend and
fluctuate in the limit of N→�, and the tubular surface may
also bend and wind in the same limit.

Figures 3�a�–3�c� show the bending energy S2 /NS� of Eq.
�4� against b, which were obtained on the surfaces of L=6,
L=8, and L=11, respectively. NS��=NS+6NJ−12� is the total
number of vertices where S2 is defined. 6NJ−12 is the total
number of corners of the junctions, which include 12 penta-
gons. The solid lines on the data were drawn to guide the
eyes. Dashed lines drawn vertically denote the phase bound-
ary between the tubular and the spherical phases, the bound-
ary between the tubular and the planar phases, and the
boundary between the planar and the spherical phases. The
discontinuous change of S2 /NS� between the tubular phase
and the spherical �or the planar� phase is very clear in the
figures and considered to be a sign of the first-order transi-
tion.

In order to see the difference between S2 /NS� in those three
phases, we plot in Figs. 4�a�–4�c� the variation of S2 /NS�
against MCS obtained at b=21.2, b=21.4, and b=21.8 on

the �N ,NS ,NJ ,L�= �8462,1890,92,8� surface. The thermali-
zation MCS were not discarded; they were included only in
those variations. S2 /NS� at b=21.2 in Fig. 4�a� shows a jump
from the spherical phase to the planar phase and a jump from
the planar phase to the tubular phase; the corresponding
MCS at the jumps were indicated with the dashed vertical
lines. We also find in Fig. 4�b� a jump from the spherical
phase to the planar phase. A jump is also seen in S2 /NS� at
b=21.8 in Fig. 4�c� from the spherical phase to the planar
phase.

The value of b=21.2 corresponds to the tubular phase,
whereas b=21.4 and b=21.8 correspond to the planar phase,
because the final states are considered to be stable states. The
surfaces at b=21.2 and b=21.8 can be seen in the snapshots
in Figs. 3�a� and 3�b�.

The distribution of S2 /NS� are shown as the normalized
histograms h�S2� in Figs. 4�d�–4�f�, which, respectively, cor-
respond to the variations in Figs. 4�a�–4�c�. We see that h�S2�
in Fig. 4�d� has three peaks; two of them are almost overlap-
ping and the other one is distinctly separated from the pre-
vious two. Those three peaks in h�S2� correspond to the
spherical phase, planar phase, and the tubular phase. Two
almost overlapping peaks can also be seen in h�S2� in Figs.
4�e� and 4�f�, and they are corresponding to the spherical
phase and the planar phase. We remark that the surfaces
hardly change not only from the tubular phase to the smooth
�=spherical or planar� phase but also from the planar phase to
the spherical phase on the L=8 and L=11 surfaces. For this
reason, we find in Figs. 4�a�–4�c� no jump back from a
higher S2 state �such as the tubular state� to a lower S2 state
�such as the planar state�.

20 21 22 23
0.98
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S3/NB

b
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L=8
α=1.5
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L=6
α=1.5
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46 48 50 52
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1.03

1.04

(c)

spherical

S3/NB

b

N=6522
L=11
α=1.5

tubular

FIG. 5. The two-dimensional bending energy
S3 /NB against b obtained on the surfaces of �a�
L=6, �b� L=8, and �c� L=11. NB is the total num-
ber of bonds where S3 is defined.
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FIG. 4. The variation of S2 /NS� against MCS,
which were obtained on the �N ,NS ,NJ ,L�
= �8462,1890,92,8� surface at �a� b=21.2, �b�
b=21.4, and �c� b=21.8. The dashed lines denote
the MCS where the jumps occurred. The corre-
sponding normalized histogram h�S2� obtained at
�d� b=21.2, �e� b=21.4, and �f� b=21.8. The pa-
rameter � was fixed to �=3/2.
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The two-dimensional bending energy is defined by

S3 = �
�ij�

�1 − ni · n j� , �6�

where ni is the unit normal vector of the triangle i, and ni ·n j
is defined on the common bond �ij� of the triangles i and j.
S3 is not included in the Hamiltonian and is defined even on
the edges of the rigid junctions. Figures 5�a�–5�c� show
S3 /NB against b obtained on the surfaces of L=6, L=8, and
L=11, where NB is the total number of bonds including the
edges of the junctions. The jump of S3 /NB in Fig. 5�b� is
clearly seen between the tubular phase and the planar phase.
On the contrary, S3 /NB in the planar phase in Fig. 5�b�, as
well as S2 /NS� in the planar phase in Fig. 3�b�, is not so
clearly distinguishable from that in the spherical phase.

It is expected that the Gaussian bond potential S1 /N is
influenced by the phase transitions. The potential S1 /N
should be S1 /N�3/2, which is satisfied in the model with-
out the rigid junctions because of the scale invariant property
of the partition function in that case. However, the junction
size R in Eq. �5� is finite in the model of this paper, and
therefore S1 /N can slightly deviate from 3/2.

Figures 6�a�–6�c� show S1 /N against b obtained on the
surfaces of �a� L=6, �b� L=8, and �c� L=11. Discontinuous
changes in S1 /N shown in the figures are consistent with the
discontinuous transitions of the model, although the changes
are very small compared to the value of S1 /N itself. We find
also the expected deviation of S1 /N from 3/2 in the figures.

Figures 7�a�–7�c� show the mean square size X2, which is
defined by

X2 =
1

N
�

i

�Xi − X̄�2, X̄ =
1

N
�

i

Xi, �7�

where X̄ is the center of mass of the surface. We see that the
phase transition is not reflected in X2 on the L=6 surfaces in

Fig. 7�a�, and the transition is also not reflected in X2 on the
L=8 surfaces in Fig. 7�b� at the transition point between the
planar phase and the spherical phase. To the contrary, X2

discontinuously changes in Fig. 7�b� at the transition point
between the tubular phase and the planar phase and also at
the transition point in Fig. 7�c�. All of these behaviors of X2

at the transition points are consistent with those of S2 /NS�,
S3 /NB, and S1 /N.

B. �=0

In this section, we present some of the results obtained
under �=0.

Snapshots of surfaces of �=0 are shown in Figs.
8�a�–8�c�, which, respectively, correspond to the tubular
phase �b=20.9�, the planar phase �b=21.4�, and the spherical
phase �b=21.8�. The surface size is �N ,NS ,NJ ,L�
= �8462,1890,92,8�, which is identical to that in Fig. 2. The
snapshot in Fig. 8�b� at b=21.4 is the final configuration
produced after 1.9�108 MCS including 1�107 thermaliza-
ion MCS; the planar surface was stable throughout the simu-
lation. Thus, we find that three distinct phases are seen also
in the surfaces of L=8, and that the planar phase is unstable
on the surfaces of L=6 and L=11 under the condition �=0.
Therefore, we consider that the phase structure of the model
is independent of whether �=3/2 or �=0.

The one-dimensional bending energy S2 /NS� obtained un-
der �=0 is shown in Figs. 9�a�–9�c�. A discontinuous change
can be seen in S2 /NS� not only in Fig. 9�b� at the phase
boundary between the tubular phase and the planar phase but
also in Fig. 9�c� at the phase boundary between the tubular
phase and the spherical phase. A jump of S2 /NS� in Fig. 9�b�
at the transition point between the planar phase and the
spherical phase is very small, and hence is hardly seen just
the same as in Fig. 3�b� under �=3/2 in the previous section.
Thus, we find no difference between S2 /NS� of �=0 and that
of �=3/2.
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tubular spherical FIG. 6. The Gaussian bond potential S1 /N
against b obtained on the surfaces of �a� L=6, �b�
L=8, and �c� L=11.
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The mean square size X2 are shown in Figs. 10�a�–10�c�.
A jump is also seen in X2 on the L=8 and L=11 surfaces in
Figs. 10�b� and 10�c�, and it is hardly seen on the L=6 sur-
faces of size up to �N ,NS ,NJ ,L�= �9282,2400,162,6�. These
results are identical to those observed in Figs. 7�a�–7�c� un-
der �=3/2.

Finally, we comment on the planar phase appeared only
on the L=8 surface. The thermal fluctuation of vertices in-
side the compartments disorders the surface against the bend-
ing energy of the compartment boundary. Therefore, the
strength to disorder the surface increases �decreases� with
increasing �decreasing� L if N remains fixed, as stated in Sec.
2. On the other hand, the mechanical strength of the surface
increases �decreases� with decreasing �increasing� L, because
the total number of junctions increases �decreases� with de-
creasing �increasing� L. Therefore, the strength to order the
surface increases �decreases� with decreasing �increasing� L.
Then, we expect that the surface is ordered �disordered� at
sufficiently small �large� L at given intermediate value of b.
Moreover, it seems possible that two competitive forces to
order �disorder� the surface are balanced with each other at
intermediate values of L and consequently, some new phase
appears depending on b at those L. Note also that the possi-

bility of the appearance of planar phase is not completely
eliminated on the surfaces of L=6 and L=11 of sufficiently
large size.

V. SUMMARY AND CONCLUSION

We have shown that a dynamically triangulated spherical
surface has three distinct phases: the tubular phase, the pla-
nar phase, and the spherical phase, and that they are sepa-
rated by discontinuous transitions. The first-order nature was
very clear from the discontinuity in the bending energies S2
and S3 not only at the transition point between the tubular
phase and the planar phase but also at the transition point
between the tubular phase and the spherical phase. We know
that the model has the collapsed phase at sufficiently small b,
since the self-avoiding property is not assumed at least.
Therefore, we expect that the model has four different phases
including the collapsed phase, although the order of the tran-
sition between the collapsed phase and the tubular phase is
unknown.

The mechanical strength of the surface is given only by
elastic linear chains with rigid junctions. The triangulated
surfaces are characterized by the size �N ,NS ,NJ ,L�, where N
is the total number of vertices including the junctions, NS is
the total number of vertices on the chains, NJ is the total
number of junctions, and L is the length of chains between
the two nearest-neighbor junctions on the starting configura-
tions. These four parameters are not totally independent, be-
cause these are given by two independent integers �� ,m�,
where m divides �. In fact, N=10�2−60m2+2, NS=30m��
−3m�, NJ=10m2+2, and L= �� /m�−2.

We assumed three different values for L such that L=6,
L=8, and L=11 in the simulations. The edge length R of the
rigid junction was fixed to be R=0.1. The parameter �,
which represents a weight for the three-dimensional integra-
tions of the partition function, was assumed as �=3/2 and
�=0.

It is remarkable that the model has the planar phase,
which is stable only on the surfaces with a specific structure.
In fact, the planar phase can be seen on the surfaces of L
=8, and it is unstable on the L=6 and L=11 surfaces. The
planar phase appears in a narrow region on the b axis be-
tween the tubular phase and the spherical phase, and it is
distinguishable from the spherical phase because a small but
finite discontinuity can be seen in the bending energies S2 /NS�
and S3 /NB. The gap of the bending energy S2 at the transition
point is very small, i.e., S2 in the planar phase is almost

(a) b= 20.9 (b) b= 21.4 (c) b= 21.8

(d) The section (e) The section (f) The section

FIG. 8. �Color online� The snapshots of surfaces of size
�N ,NS ,NJ ,L�= �8462,1890,92,8� obtained at �a� b=20.9 �tubular
phase�, �b� b=21.4 �planar phase�, and �c� b=21.8 �spherical
phase�, and �d�, �e�, �f� are the surface sections of �a�, �b�, �c�,
respectively. �=0.
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the total number of vertices where S2 is defined.
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identical to that in the spherical phase; however, the double
peak structure was clearly seen in the histogram of S2, which
is included in the Hamiltonian. From this, we confirmed that
the transition between the planar phase and the spherical
phase is of first order. Our model in this paper indicates that
one possible origin of planar shape of spherical membranes
comes from the inhomogeneity due to the cytoskeletal struc-
ture and the fluidity of lateral diffusion of vertices.

We have confirmed that the results obtained at �=3/2 in
Eq. �3� remain unchanged when �=0. The phase structure of
the fluid surface model in this paper is independent of the

choice of � at least for �=3/2 and �=0. Large scale simu-
lations should be performed. It remains to be studied how
large �� ,m� are sufficient for the thermodynamic limit of the
model.
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